Erratum to "Distinction for unipotent p-adic groups"

Nadir Matringe

June 1, 2020

Abstract

The Kirillov classification in [4] is misstated, namely [4, Theorem 3.6, 3)] is incorrect. We correct it here, as well as the incorrect proof of [4, Theorem 5.2] which follows from this misstatement. One can also check https://arxiv.org/abs/1909.07289v5 for a full corrected version.

First [4, Lemma 4.3] and the discussion before it must be repalced by:

We make σ act on \mathcal{N}^* by the formula

$$\sigma(\phi) = -\phi^{\sigma}.$$

Then a very special case of [4, Lemma 4.2] is:

Lemma 0.1. Take $\phi \in \mathcal{N}^*$, then $\sigma(\phi)$ and ϕ are in the same U-orbit if and only if there is a σ -fixed linear form in the U-orbit of ϕ , i.e. a linear form which vanishes on \mathcal{N}^{σ} .

Then [4, Theorem 3.6, 3)] should be replaced by the following statement:

3) Two irreducible representations $\pi(U', U, \psi_{\phi})$ and $\pi(U'', U, \psi_{\phi'})$ are isomorphic if and only if ϕ and ϕ' are in the same U-orbit for the co-adjoint action.

The last two sentences of the proof of [4, Theorem 3.6, 3) should be replaced by:

By induction this means that $\phi_{|\mathcal{N}_0}$ and $\phi'_{|\mathcal{N}_0}$ are U₀-conjugate. Then it is explained just before [3, Lemma 5.2] at the end of the proof of [3, Theorem 5.2] that this implies that ϕ and ϕ' are indeed U-conjugate.

One can then introduce the following notation:

Notation 0.2. The isomorphism class of the irreducible representation $\pi(U', U, \phi)$ only depends on ϕ , we set

$$\pi(\psi_{\phi}) := \pi(\mathbf{U}', \mathbf{U}, \psi_{\phi}).$$

Finally the proofs and statements of [4, Theorem 5.2 and Corollary 5.3] must be corrected as follow, thanks to Lemma 0.3 hereunder:

Note that $(\mathcal{N}^*)^{\sigma}$ and $(\frac{\mathcal{N}}{\mathcal{N}^{\sigma}})^*$ are canonically isomorphic, and we identify them. It is a space acted upon by U^{σ} . Before stating the main theorem, we recall [1, Lemma 2.2.1], the proof of which is valid over F (as it relies on [2, Proposition 1.1.2] which has no assumption on the field).

Lemma 0.3. Take $\phi \in (\frac{\mathcal{N}}{\mathcal{N}^{\sigma}})^*$, then there is a σ -stable Lie sub-algebra \mathcal{N}' of \mathcal{N} such that (ϕ, \mathcal{N}') is polarized.

We can now prove the following result.

Theorem 0.4. A representation $\pi \in \operatorname{Irr}_{U^{\sigma}}(U)$ is distinguished if and only $\pi^{\vee} = \pi^{\sigma}$. Moreover the map $U^{\sigma}.\phi \mapsto \pi(\psi_{\phi})$ is a bijection from $U^{\sigma} \setminus (\frac{N}{N^{\sigma}})^*$ to $\operatorname{Irr}_{U^{\sigma}-\operatorname{dist}}(U)$.

Proof. Suppose that $\pi = \pi(\psi_{\phi}) \in \operatorname{Irr}(U)$ is conjugate self-dual, then $\sigma(\phi)$ and ϕ' are in the same U-orbit, which must contain a σ -fixed linear form thanks to Lemma 0.1. So we can in fact suppose that $\phi \in (\frac{N}{N^{\sigma}})^*$. In particular by Lemma 0.3 we can write $\pi(\psi_{\phi}) = \pi(U', U, \psi_{\phi})$ for $U' = \exp(\mathcal{N}')$ which is σ -stable. The quotient $U'^{\sigma} \setminus U^{\sigma}$ identifies with a closed subset of $U' \setminus U$ and the condition $\phi \in (\frac{N}{N^{\sigma}})^*$ implies that ψ_{ϕ} is trivial on U'^{σ} . Then π is distinguished, with explicit linear nonzero U^{σ} -invariant linear form given on π by

$$\lambda: f\mapsto \int_{\mathbf{U}'^\sigma \backslash \mathbf{U}^\sigma} f(u) du$$

To finish the proof it remains to prove the injectivity of the map $U^{\sigma}.\phi \mapsto \pi(\psi_{\phi})$, which is [4, Lemma 4.4].

In particular in the case of the Galois involution one gets a bijective correspondence between $\operatorname{Irr}(U^{\sigma})$ and $\operatorname{Irr}_{U^{\sigma}-\operatorname{dist}}(U)$. Indeed $\mathbf{U} = \operatorname{Res}_{E/F}(\mathbf{U}^{\sigma})$ for E a quadratic extension of F. Writing δ for an element of E - F with square in F. One can identify the space $(\mathcal{N}^{\sigma})^*$ to the space $(\mathcal{N}^*)^{\sigma}$ by the map

 $C: \phi_{\sigma} \to \phi$

where

$$\phi(N + \delta N') = \phi_{\sigma}(N').$$

This yields:

Corollary 0.5. When E/F is a Galois involution, the map $\pi(\psi_{\phi_{\sigma}}) \to \pi(\psi_{\phi})$ is a bijective correspondence from $\operatorname{Irr}(U^{\sigma})$ to $\operatorname{Irr}_{U^{\sigma}-\operatorname{dist}}(U)$

Acknowledgements. We thank Martin Andler for informing us of the misstatement of the Kirillov classification.

References

- Yves Benoist. Analyse harmonique sur les espaces symétriques nilpotents. J. Funct. Anal., 59(2):211–253, 1984.
- [2] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne. *Représentations des groupes de Lie résolubles*. Dunod, Paris, 1972. Monographies de la Société Mathématique de France, No. 4.
- [3] A. A. Kirillov. Unitary representations of nilpotent Lie groups. Russian Math. Surveys, 17(4):53-104, 1962.
- [4] Nadir Matringe. Distinction for unipotent *p*-adic groups. Bull. Iranian Math. Soc., 2020.

UNIVERSITÉ DE POITIERS, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex. France. *E-mail address:* nadir.matringe@math.univ-poitiers.fr